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Abstract

Commercially viable aerial robotic vehicles require
robust and efficient, but low-cost attitude (vehicle
orientation) stabilisation systems. A typical attitude
stabilisation system employs a low-cost IMU and con-
sists of an attitude estimator as well as an attitude
controller. This paper proposes a coupled non-linear
attitude estimation and control design for the atti-
tude stabilisation of low-cost aerial robotic vehicles.
Attitude estimation is based on a non-linear comple-
mentary filter expressed on the rotation group. The
attitude control algorithm is based on a non-linear
control Lyapunov function analysis derived directly
in terms of the rigid-body attitude dynamics. The
interaction terms are bounded in terms of estima-
tion and control errors and the full coupled system is
shown to be (almost) globally stable.

1 Introduction

The last decade has seen an intense world wide effort
in the development of mini aerial vehicles (mAV).
Such vehicles are characterised by; small scale (di-
mensions of the order of 60cm), limited payload ca-
pacity, and embedded avionics systems (Office of Sec-
retary of Defence, 2005). A subset of these mAV
systems are the class of vertical take off and landing
(VTOL) systems. A key component of the avion-
ics system in a mAV is the attitude sensing and sta-

bilisation control subsystem. Such systems must be
highly reliable and have low computational overhead
to avoid overloading the limited computational re-
sources available in some applications. Traditional
linear and extended Kalman filter techniques (Jun
et al. , 1999; Bachmann et al. , 2001; Rehbinder
& Hu, 2004), and more sophisticated filter tech-
niques that include models of the system (Bryson &
Sukkarieh, 2004), suffer from issues associated with
poor modelling of the system (in particular, charac-
terisation of noise within the system necessary for
tuning filter parameters) as well as potentially high
computational requirements. In recent work by the
authors (Mahony et al. , 2005; Hamel & Mahony,
2006) a complementary filter has been proposed that
provides a computationally cheap implementation of
a simple and robust attitude estimation scheme that
fully respects the non-linearities of rigid-body mo-
tion. This work is closely related to work that uses
the quaternion formulation for the design of non-
linear attitude filters (Salcudean, 1991; Vik & Fossen,
2001; Thienel & Sanner, 2003). In other recent work
(Tayebi & McGilvray, 2004; Tayebi & McGilvray,
2006) a fully non-linear control algorithm for dynamic
stabilisation of VTOL mAV systems has been devel-
oped based on the quaternion formulation for rigid
body dynamics. Early work in this area predates the
development of quaternion based filters (B. Wie &
Arapostathis, 1989; Wen & Kreutz-Delgado, 1991;
Fjellstad & I.Fossen, 1994). To the authors knowl-
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edge, no prior work has brought together these ideas
into an dual control and estimation analysis.

In this paper, we present a coupled non-linear es-
timation and control design for the attitude stabil-
isation of low-cost mAV vehicles. The attitude es-
timation algorithm is based on a the non-linear ex-
plicit complementary filter proposed in earlier work
by the authors (Hamel & Mahony, 2006). This fil-
ter does not require on-line algebraic reconstruction
of attitude and is ideally suited for implementation
on embedded hardware platforms. Furthermore, the
relative contribution of different data can be prefer-
entially weighted in the observer response, a prop-
erty that allows the designer to adjust for applica-
tion specific noise characteristics. Finally, the ex-
plicit complementary filter remains well defined even
if the data provided is insufficient to algebraically re-
construct the attitude, for example, for an IMU with
only accelerometer and rate gyro sensors. The control
algorithm considered is an adaptation of the classical
passivity based control for mechanical systems (Wen
& Kreutz-Delgado, 1991; Tayebi & McGilvray, 2004;
Tayebi & McGilvray, 2006). We use a feed-forward
control input transformation to compensate for the
trajectory tracking inputs and model non-linearities.
Stability is obtained using a control Lyapunov func-
tion design based on the natural mechanical passivity
of rigid-body dynamics. The estimation and control
analysis is undertaken in the geometric framework of
the rotation group and respects all the non-linearities
of rigid-body (rotational) motion. The main result
is a combined attitude estimation and control algo-
rithm. The interaction terms are bounded in terms of
of estimation and control errors and the full coupled
system is shown to be (almost) globally stable for at
least two inertial direction measurements (ie. gravita-
tional and magnetic fields). Simulations are provided
that show the closed-loop system is well conditioned
and continues to function well in the presence of sig-
nificant noise and when only a single inertial direction
(the gravitational field) is measured.

2 Problem definition

2.1 System Dynamics

Let R = A
BR ∈ R3×3 be a rotational matrix denoting

the attitude of a body-fixed frame {B} relative to
the inertial frame {A}. Let Ω = BΩ ∈ R3 denote the
angular velocity of the body-fixed frame expressed in
the body-fixed frame {B}. The rigid-body dynamics
of a system are given by

Ṙ = RΩ× Kinematics (1)

IΩ̇ = −Ω× IΩ + τ Dynamics, (2)

where τ denotes the torque input to the dynamics and
I represents the inertia matrix. We use the notation
Ω× to denote the anti-symmetric matrix

Ω× =




0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


 .

The notation ‘vex’ denotes the reverse operation.
Thus, vex(Ω×) = Ω and A = vex(A)× for A = −AT .
Let q = (s, v) denote a unit quaternion (with s the
scalar and v the vector component) corresponding to
the rotation matrix R = I3 + 2sv× + 2v2

× and let
p(Ω) = (0,Ω) denote the pure (or velocity) quater-
nion. The rigid-body dynamics in the quaternion rep-
resentation are

q̇ =
1
2
q ⊗ p(Ω) Kinematics (3)

IΩ̇ = −Ω× IΩ + τ Dynamics. (4)

Note that the quaternion kinematics can be written
explicitly in terms of the components s and v

v̇ =
1
2

(v× + sI3)Ω (5)

ṡ = −1
2
vT Ω. (6)

2.2 Measurements

A typical inertial measurement unit (IMU) is
equipped with 3-axis accelerometers, 3-axis rate gyro-
scopes and 3-axis magnetometers. Low-cost IMU sys-
tems are typically based on micro-electro-mechanical
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systems (MEMS) technology and have poor measure-
ment error characteristics.

Three-axis rate gyroscopes provide measurements
of the angular velocities of the body-fixed frame {B}
with respect to an inertial frame of reference {A}.
The measurement is characterised by

Ωy = Ω + b + µ, (7)

where Ω denotes the true value, µ denotes a (Gaus-
sian) measurement noise process and b := b(t) de-
notes a slowly time-varying (up to 0.05 rad/s at 0.1
Hz and lower frequencies) non-stochastic bias. The
bias is typically due to a mixture of temperature ef-
fects and vibration of the IMU unit that influences
the characteristics of the MEMS chip used.

Three-axis accelerometers provide measurements
of the inertial acceleration of the IMU. The measure-
ment is characterised by

ay = −RT (g0e3 − v̇)− ν, (8)

where g0 ≈ 9.8ms−2 is the gravitational constant,
e3 = (0, 0, 1), v̇ is the acceleration of the body-fixed
frame with respect to the the inertial frame and ν
denotes (Gaussian) measurement noise. For the sys-
tems considered, there is no sufficiently good model
of the system dynamics available to distinguish the
body-fixed frame acceleration v̇ from the gravita-
tional component. However, for the quasi-stationary
flight conditions considered for VTOL mAV systems
it is reasonable to assume that the low frequency con-
tent of v̇ is zero. We assume that there is a cutoff
frequency (typically around 0.1 to 1 Hz) below which
the measured acceleration ay ≈ −g0R

T e3 − ν is a
reasonable approximation of the gravitational force.
The information used in the filter algorithm is

va =
ay

|ay| , |va| = 1, (9)

where va ∈ {A} is a vector direction measurement.
The estimator design is based on the assumption that
va is a reasonable low frequency approximation of the
inertial z-axis in the body-fixed frame.

The magnetometers measure the inertial magnetic
field expressed in the body-fixed frame {B}

Bm = RT Am + d + υ, (10)

where Am is the magnetic field relative to the iner-
tial frame, d represents a bias term due to extrane-
ous magnetic fields, and υ denotes a (Gaussian) noise
term. The vectorial measurement used is

vm =
Bm

|Bm| , |vm| = 1, (11)

Unfortunately, many mAV systems use small scale
electric motors and the bias term d in this case may
dominate (d(t) ≈ ±2π/3rad time-varying) the mea-
surement Bm making the magnetometer measure-
ments worthless as a filter input. In the following
development, the user may choose to omit the magne-
tometer output in the filter error term if it is deemed
to have no value.

3 Combined control and esti-
mation

In this section, we present a measurement based non-
linear attitude estimation algorithm and a non-linear
control algorithm for attitude control of a VTOL
mAV. The main result is a coupled control Lyapunov
function formulation that provides (almost) global
stability of the coupled estimation/control system.

3.1 Estimation error

Let vi ∈ R3, i = 1, . . . , n, denote n directional mea-
surements. For a typical low-cost IMU the measure-
ments are v1 = va (Eq. 9) and v2 = vm (Eq. 11), or in
the case vm is unreliable, just v1 may be used. Alter-
natively, directional measurements can be obtained
from other sensor systems such as vision systems.
For example, the direction of the sun or a normal to
a horizon plane can be measured by suitable vision
systems and used for navigation and stabilisation of
the platform. As such we have chosen to use generic
notation {vi} for the directional measurements, al-
though the following development is discussed in the
context of measurements obtained from an IMU.

Let v0i, i = 1, . . . , n, denote the inertial directions
of the measurements. That is, v01 = v0a = e3 is the
inertial z-axis by assumption, while v02 = v0m is the
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inertial orientation of the earths magnetic field in the
location where the experiment is undertaken.

Let R̂ denote an estimate of the true attitude R.
Let v̂i denote the estimate of vi

v̂i = R̂T v0i. (12)

Let ki > 0, i = 1, . . . , n, be a sequence of positive
weight gains. The estimation error is defined to be

E =
n∑

i=1

ki cos(∠vi, v̂i)

=
n∑

i=1

kiv
T
i v̂i =

n∑

i=1

kiv
T
0iRR̂T v0i

=
n∑

i=1

kitr
(
R̂T RRT v0iv

T
0iR

)
= tr

(
R̃P

)

where R̃ = R̂T R is the total estimation error on
SO(3) and

P = RT

(
n∑

i=1

kiv0iv
T
0i

)
R. (13)

The matrix P > 0 is positive semi-definite (for n < 3)
time-varying matrix. The weight gains {ki} allow the
designer to weight the relative importance of different
data in the filter response. Thus, if v1 is considered
to be more reliable than v2 one would choose k1 > k2.

3.2 Estimation algorithm

The estimation algorithm proposed is the explicit
complementary filter dynamics on SO(3) (Hamel &
Mahony, 2006)

˙̂
R = R̂(Ωy − b̂ + ko

P ω)×, (14a)

ω =
n∑

i=1

kivi × v̂i, (14b)

˙̂
b = −ko

Iω, (14c)

where ko
P > 0 and ko

I > 0 are constant proportional
and integral observer gains, respectively. The term ω
is an innovation or error term in the filter dynamics.

It is convenient to rewrite ω as an expression that
recaptures the error matrix R̃ = R̂T R. For any u, v ∈
R3, one has

(u× v)× = (u×v× − v×u×) = vuT − uvT .

Thus,

ω× =
n∑

i=1

ki(v̂iv
T
i − viv̂

T
i )

=
n∑

i=1

ki(R̂T RRT v0iv
T
0iR−RT v0iv

T
0iRRT R̂)

= R̃P − PR̃T = 2Pa(R̃P )

where Pa(A) = (A − AT )/2 is the anti-symmetric
projection of the matrix A.

3.3 Control error

Let (Rd(t), Ωd(t)) denote the desired attitude trajec-
tory and let {D} denote the desired frame of reference
associated with Rd. We assume Ωd ∈ {D} is specified
in the desired frame of reference such that we have
desired kinematics

Ṙd = RdΩd
×. (15)

The kinematic control error is defined to be

R̄ = RT
d R̂. (16)

Note that we use the filtered estimate R̂ of the true
attitude R to define the control error. This ensures
that the error term R̄ can be computed and used in
the control design. The controller is not, however, a
certainty equivalence controller, as we will provide a
full coupled stability analysis. Recalling Eq. 1 along
with Eqn’s 15 and 16 the derivative of R̄ yields

˙̄R = R̄(Ωy − b̂ + ω)× − Ωd
×R̄. (17)

where ω is given by Eq. 14b. The error term associ-
ated with the system dynamics is defined to be

ε = Ω− Ωd + kv
P vex(Pa(R̄)), (18)

where kv
P > 0 denotes a constant proportional gain.

The gain kv
P acts like a control gain for a virtual error
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in the paradigm of back-stepping control design. In
practice, the true angular velocity Ω is not measured
and an estimate Ω ≈ Ωy − b̂ is used

ε ≈ Ωy − b̂− Ωd + kv
P vex(Pa(R̄)), (19)

When b̂ has converged and provides a good estimate
of the gyrometer bias this ensures a reasonable (if
noisy) estimate of ε. During the initial transient the
dynamics of b̂ should be compensated in the control
design. In the following development we compen-
sate for the dynamics of b̂ in the feed-forward control
transformation to ensure that the modelled error dy-
namics are accurate (Eq. 22). However, we use the
true value of ε in the control analysis without con-
sidering the transient evolution of b̂. We use the ap-
proximate value of ε in the control implementation.
Since the signal error occurs in the control input, it
acts as a load disturbance and will be suppressed by
feedback control.

The approach taken is to apply a control input
transformation that contains the feed-forward terms
required to track the trajectory (Rd(t),Ωd(t)) as well
as compensating for non-linear transient terms due to
mismatch of the filtered trajectory to the desired tra-
jectory. The control transformation leads to error dy-
namics that have the classical passivity properties of
rigid-body motion. The control transformation does
not try to stabilise the non-linear system itself. It
is a feed-forward term that ensures the subsequent
stabilisation problem can be tackled as a non-linear
regulation problem.

Define a non-linear control input transformation

τ := τ(Ω,Ωd, R, Rd, τd)

in terms of a new control input τd. The actual input τ
is chosen to impose the natural mechanical structure
on the error dynamics

Iε̇ = −ε× IΩ + τd. (20)

To determine the expression for τ one differentiates
Iε from Eq. 19

Iε̇ = IΩ̇ + ko
Iω + I(−Ω̇d + kv

P vex(Pa( ˙̄R)))

= (−Ω× IΩ + τ) + ko
Iω + I(−Ω̇d + kv

P vex(Pa( ˙̄R)))
(21)

Equating Eqn’s 20 and 21, and solving for τ one ob-
tains

τ =IΩ̇d + (Ωd × IΩ)− kv
PPa(R̄)IΩ− ko

Iω

− kv
P Ivex(Pa( ˙̄R)) + τd. (22)

Applying the input transformation (22) transforms
the dynamics of (2) into the system

˙̄R = R̄Ω× − Ωd
×R̄ Error kinematics (23a)

Iε̇ = −ε× IΩ + τd Error dynamics, (23b)

where τd denotes the torque input to the error dy-
namics.

3.4 Control design

Based on the formulation of the error dynamics (23a
and 23b) it is straightforward to apply standard non-
linear passivity based control design technics (Wen
& Kreutz-Delgado, 1991; Tayebi & McGilvray, 2004;
Tayebi & McGilvray, 2006; Cha, 2006,). The control
input chosen is

τd := −kc
Dε− kc

P vex(Pa(R̄)), (24)

where kc
P > 0 and kc

D > 0 are proportional and
derivative control gains for the control. The re-
cent work of Tayebi et al.(Tayebi & McGilvray, 2004;
Tayebi & McGilvray, 2006) showed that the resulting
closed-loop system (assuming state measurements)
was almost globally asymptotically and locally ex-
ponentially stable. Note that Tayebi’s results were
derived in the quaternion formulation. An SO(3) for-
mulation is provided in (Cha, 2006,).

3.5 Coupled estimation and control
algorithm

The main result of this paper is to prove coupled
stability of the estimation and control algorithm.

We use the expression almost globally asymptoti-
cally stable to a given limit point to mean that, for
almost all initial conditions, the trajectory of the sys-
tems converges to the given limit. That is, the set of
initial conditions for which this does not occur are of
measure zero in state space.
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Lemma 3.1. Consider the system dynamics

Ṙ = RΩ×

IΩ̇ = −Ω× IΩ + τ

with estimation dynamics

˙̂
R = R̂[Ωy − b̂ + ko

P ω]×

ω = −vex

(
n∑

i=1

kivi × v̂i

)

˙̂
b = −ko

Iω + ko
Ikc

P vex(Pa(R̄))

and control input

τ = IΩ̇d + (Ωd × I(Ωy − b̂))− kv
PPa(R̄)I(Ωy − b̂)

− kv
P Ivex(Pa( ˙̄R)) + τd,

R̄ = RT
d R̂

τd = −kc
Dε− kc

P vex(Pa(R̄))

ε = Ωy − b̂− Ωd + kv
P vex(Pa(R̄))

where {ko
P , ko

I , kv
P , kc

P , kc
D} are positive gains chosen

such that 2kv
P > kc

P ko
P . Assume that there are two or

more (n ≥ 2) directional measurements vi available.
Assume that Ω(t) is persistently exciting. The closed-
loop system is almost globally asymptotically stable to
R̃ → I, R̄ → I, b̃ → 0 and ε → 0.

Proof. Consider a Lyapunov function candidate

V =
1
2
εT Iε+

1
2
kc

P tr(I3−R̄)+
n∑

i=1

kI−tr(R̃P )+
1

2ko
I

|b̃|2,

(25)
where b̃ = b− b̂. Differentiating V, one obtains:

V̇ = εT Iε̇− 1
2
kc

P tr( ˙̄R)− tr( ˙̃RP + R̃Ṗ ) +
1
ko

I

b̃T ˙̃
b.

Substituting for ˙̃
b = − ˙̂

b, (20), one obtains

V̇ = εT (−ε× IΩ + τd)

− 1
2
kc

P tr
(
R̄(Ωy − b̂ + ω)× − Ωd

×R̄
)

− 1
2
tr(R̃PΩ× − (Ωy − b̂ + ω)×R̃P ) +

1
ko

I

b̃T (ḃ− ˙̂
b).

Due to the passivity of the error dynamics εT (−ε ×
IΩ) = 0 and we assume ḃ is a constant. Hence,

V̇ = εT τd − 1
2
kc

P tr
(
R̄(Ωy − Ωd − b̂ + ω)×

)

− 1
2
tr

(
R̃P (Ω− Ωy + b̂− ω)×

)
+

1
ko

I

b̃T (− ˙̂
b)

Recalling Ωy ≈ Ω + b and substituting for ω =
vex(Pa(R̃P )) one obtains

V̇ =εT τd − 1
2
kc

P tr
(
R̄(Ω + b− Ωd − b̂ + kv

P vex(Pa(R̄)))×

−kv
P vex(Pa(R̄))× + R̄ω×

)− 1
2
tr(R̃P (−b + b̂− ω)×)

− 1
2ko

I

tr(b̃T
×

˙̂
b×)

Simplifying and collecting like terms one obtains

V̇ = 〈ε, τd + kc
P vex(Pa(R̄))〉 − kc

P kv
P |vex(Pa(R̄))|2

− ko
P |vex(Pa(R̃P ))|2 + kc

P ko
P 〈vex(Pa(R̄)), vex(Pa(R̃P ))〉

−
〈

b̃,

(
vex(Pa(R̃P ))− kc

P vex(Pa(R̄)) +
1
ko

I

˙̂
b

)〉

where 〈·, ·〉 is the vector inner product. Substituting

for the control input τd and the adaptive bias term ˙̂
b

one obtains

V̇ =− kc
D|ε|2 − kc

P kv
P |vex(Pa(R̄))|2

− ko
P |vex(Pa(R̃P ))|2

+ kc
P ko

P 〈vex(Pa(R̄)), vex(Pa(R̃P ))〉. (26)

By completing the square, exploiting the cross term
〈vex(Pa(R̄)), vex(Pa(R̃P ))〉 one can show that

V̇ = −kc
D|ε|2 −

kc
P kv

P

2
|vex(Pa(R̄))|2

− ko
P

(
1− kc

P ko
P

2kv
P

)
|vex(Pa(R̃P ))|2

− 1
2

(
√

kc
P kv

P vex(Pa(R̄))− ko
P

√
kc

P

kv
P

vex(Pa(R̃P ))

)2

.

(27)
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Recalling the relationship 2kv
P > kc

P ko
P and

discarding the indefinite term, it follows that
V̇ is negative definite in |ε|2, |vex(Pa(R̄))|2 and
|vex(Pa(R̃P ))|2. The underlying system is smoothly
defined and it is straightforward to show that all sig-
nals in the system are absolutely uniformly continu-
ous. Consequently, Barbalat’s lemma (Khalil, 1996)
ensures that these error signals converge asymptoti-
cally to zero.

It follows directly that ε → 0. It is straightforward
to see that vex(Pa(R̄)) → 0 implies R̄ → R̄T . The set
of symmetric rotation matrices consists of the iden-
tity and the set of rotations of πrad. The unstable
set πrad rotations is an unstable invariant set of the
control algorithm, each such matrix representing a
local maximum of the error function tr(I − R̄). It is
impossible to avoid such a set on SO(3) due to its
topological structure. However, due to its local max-
imum properties it is straightforward to see that it
is locally unstable and we can say that for almost all
initial conditions R(t) will lead to R̄ → I.

In Hamel et al.(Hamel & Mahony, 2006) it is shown
that vex(Pa(R̃P )) → 0 implies R̃T = R̃. Once this
is established, nearly the same argument used above
ensures that R̃ → I for almost all initial conditions.
In fact, some care should be taken due to influence of
the integral term in the filter dynamics, details can
be supplied by the authors on request. Finally, the
error term b̃ is indefinite in the Lyapunov function
derivative, however, an analysis of the invariant set
properties at R̃ = I ensures that b̃ → 0. This com-
pletes the proof.

The statement of Lemma 3.1 requires two mea-
sured directions v1 and v2. The filter and control
can easily be implemented with only a single direc-
tional measurement (Hamel & Mahony, 2006). The
authors believe that the reduced system with a single
measurement v1 will converge (for almost all initial
conditions) to a limit point such that v1 = v̂1 and
(Rd)T e3 = RT e3. Furthermore, we believe that for
a persistently exciting desired trajectory then all er-
ror variables would converge to zero, even in the case
of a single directional measurement. These claims
have not been proved and are beyond the scope of
the present paper, however, simulation studies sup-

port our hypothesis.

4 Quaternion-based formula-
tion

Using a quaternion implementation of the proposed
non-linear control algorithms and filters is advanta-
geous in the implementation of algorithms on small
scale mAV with limited avionic systems. In this sec-
tion, we reformulated the combined control and esti-
mation system in terms of a quaternion formulation.

Lemma 4.1. Consider the system kinematics, sys-
tem dynamics and estimation dynamics

q̇ =
1
2
q ⊗ p(Ω)

IΩ̇ = −Ω× IΩ + τ

τ = IΩ̇d + (Ωd × I(Ωy − b̂))− kv
P (s̄v̄ × I(Ωy − b̂))

− kv
P I( ˙̄sv̄ + s̄ ˙̄v) + τd,

τd = −kc
Dεq − kc

P s̄v̄

εq = (Ωy − b̂)− Ωd + kv
P s̄v̄

˙̂q =
1
2
q̂ ⊗ p(Ωy − b̂ + ω)

ω = −vex

(
n∑

i=1

kivi × v̂i

)

˙̂
b = −ko

Iψq + ko
Ikc

P s̄v̄

where {ko
P , ko

I , kv
P , kc

P , kc
D} are positive gains chosen

such that 2kv
P > kc

P ko
P . Assume that there are two or

more (n ≥ 2) directional measurements vi available.
Assume that Ω(t) is persistently exciting. The closed-
loop system is almost globally asymptotically stable to
q̃ → (1, 0, 0, 0), q̄ → (1, 0, 0, 0), b̃ → 0 and εq → 0.

In practice, the above dual estimator/control equa-
tions can be implemented using simple Euler forward
iteration and re-projection (re-normalisation) onto
the set of unit quaternions. The computational ad-
vantage over expressing the estimator/control equa-
tions in their matrix form and re-projecting onto the
rotation group is considerable.
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5 Simulations

A set of two experiments were undertaken to demon-
strate the performance of the proposed filter algo-
rithm. All implementations of the system were un-
dertaken for the quaternion formulation.
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Figure 1: The evolution of the quaternion state for
experiment one. The desired set point is (1, 0, 0, 0).
Due to the noise model, only practical convergence to
a neighbourhood of the desired set point is observed.

In the first experiment, an extreme initial condi-
tion was considered to observe the transient response
of the control scheme. The initial attitude of the sys-
tem was set to π/4rad of roll, with 0rad pitch and
yaw angles. This corresponds to the unit quaternion
of [0.8733, 0, 0, 0.4872]T in the quaternion represen-
tations. The desired attitude is the stable hover po-
sition with roll, pitch and yaw all zero. This corre-
sponds to the unit quaternion of [1, 0, 0, 0]T . Gaus-
sian noise and gyro bias terms were added to all sig-
nals associated with the IMU measurements based on
measured noise characteristics of a CSIRO “EiMU”
(Roberts et al. , 2002) IMU unit. It is assumed that
the initial angular velocity is zero. The plant inertia
was modelled as 0.5I3kg.m.s−2 with attitude kine-
matics and dynamics as discussed earlier. The con-
troller gains were chosen to be
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Figure 2: The evolution of the IMU measured values
(top) and the true values of angular velocity for the
rigid body dynamics. Note that the measured val-
ues in the top graph show a constant bias. This is
compensated for the combined control design.
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ko
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I 20
kv

P 40
kc

P 0.02
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D 2

Figure 1 shows the closed-loop trajectory for the
first simulation (with full quaternion measurement).
Figure 2 shows the angular velocity of the full system
as well the measurement signal obtained (in simula-
tion) from the IMU. Note the noise and bias, present
in the measured signal, that is compensated for the
closed-loop response. Figure 3 shows the torque de-
mand of the control system. In this example, the
transient response is convergent with time-constant
around 3 seconds. The noise and bias of the mea-
sured signals do not significantly disturb the system
response.

In practice, the measurement of magnetic field is
often rendered useless due to magnetic fields gener-
ated by the electric motors and components of the
flying vehicle. Moreover, the control inputs are sub-
ject to significant disturbances due to eddies and vor-
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Figure 3: The simulated control input to the rigid
body dynamics

texes ingested into the rotor inflow. A second exper-
iment was undertaken with the same initial attitude,
however, only one directional measurement (gravi-
tational direction), was used and noise was added
to the control input. The additive noise model was
based on the identified thrust noise model derived
by Pounds et al.(Pounds & Mahony, 2005). Figure
4 shows the attitude and angular velocity outputs
from the simulated rigid body dynamics. Note that
the attitude response is qualitatively similar to that
obtained in the first experiment. Only practical sta-
bility is obtained due to the actuator noise.

6 Conclusions

This paper proposes a coupled non-linear attitude es-
timation and control design for the attitude stabilisa-
tion of low-cost aerial robotic vehicles. The dual con-
trol is formulated to fully respect the geometric struc-
ture of the rotation group and is presented with a full
control Lyapunov function analysis. A version of the
control design is presented in terms of the quaternion
formulation for ease of implementation on micropro-
cessors with limited computing resources. Simula-
tions demonstrate that the control scheme functions
effectively and could be used for attitude stabilisation
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Figure 4: The simulated attitude and angular veloc-
ity using only the acceleration directional measure-
ments

of mini aerial vehicles.
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